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By introducing equivalence classes of critical points of potential energy 
hypersurfaces a unique topological space, Reaction Topology (3NE, Tc) is 
defined over an Euclidean nuclear configuration space 3NE for a system of 
N nuclei and k electrons. Relations between the topological concepts of 
molecular structure and reaction mechanism are analyzed. Topological 
equivalences between Euclidean and Riemannian representations of nuclear 
configuration spaces are exploited for the analysis of quantum mechanical 
reaction networks of all possible chemical reactions over the given potential 
energy hypersurface. 
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1. Introduction 

Differential and algebraic topology form a powerful and nearly encompassing 
framework for modern mathematics, suitable for providing the foundations for 
many, seemingly most diverse branches of mathematical disciplines [1, 2]. In 
this study we shall describe an application of topology to a quantum chemical 
problem: to the global analysis of the Born-Oppenheimer [3] energy functional 
of chemically reacting systems [4-8] 1. For this end, we shall choose a conceptually 
and mathematically simpler approach than in earlier Riemannian space 
studies E4-61, as topologies and the notions of chemical structure and reaction 
mechanisms will be introduced in an Euclidean nuclear configuration space 

1 See Ref, [8] for part I of this study. 
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where some difficulties associated with an internal coordinate description can 
be avoided. 

In the rigorous quantum mechanical description of molecules and chemical 
reactions electrons and nuclei are treated on an equal basis as quantal particles 
or wave-packets. In general, quantum mechanical probability distributions and 
expectation values replace the classical concept of position, consequently, the 
primary quantum chemical concepts are nuclear and electronic probability distri- 
butions rather than nuclear and electronic "positions". Such probability distribu- 
tions can be represented as open sets of an abstract configuration space. The 
most general mathematical theory of open sets is topology, suggesting that classical 
geometrical concepts can be replaced by topological concepts in most areas of 
molecular physics [4-8]. Topology is the most natural mathematical framework 
for the global analysis and interpretation of the results of molecular quantum 
mechanics, relevant to stereochemistry, conformational analysis and reaction 
mechanisms. 

The purpose of our studies is the development of a global topological theory of 
conformational changes and chemical reactions. The underlying principle is the 
replacement of points of the nuclear configuration space, as fundamental entities, 
by open sets of the space [4-6, 8]. In the resulting topologization only the 
fundamental global properties and relations, relevant to conformational pro- 
cesses and chemical reactions, are retained, and some of the geometrical informa- 
tion is ignored. Nevertheless, by introducing a differentiable manifold structure 
into the topological space [6, 7] all the desired geometrical concepts can be 
re-introduced in a consistent and convenient way, suitable e.g. for a vibrational 
normal coordinate analysis within various open sets. Thus we may have the best 
of both worlds: a topological model for the global analysis of the maze of all 
possible reaction mechanisms over a multidimensional potential energy hyper- 
surface [8], and a manifold model of local coordinate neighbourhoods for the 
utilization of geometrical and metric concepts in a vibrational analysis of small 
domains of the hypersufface [6, 7]. 

The motivation for the development of a topological theory is twofold: on the 
one hand, the topological model gives a convenient quantum mechanical interpre- 
tation of molecular structure and reaction mechanism [4-6, 8], and on the other 
hand, it has predictive potential in determining suitable synthetic routes in 
complex reaction networks [5]. 

The topological model of molecules is much closer to the quantum mechanical 
reality than the usual geometrical model. The conventional geometrical model 
of molecules, often visualized as nuclear masses interconnected by springs rep- 
resenting chemical bonds, gives the false impression of strong analogies with 
macroscopic vibrating systems where classical mechanics applies. A variety of 
correction terms (anharmonic correction, libration correction, etc.) is required 
to make the classical concepts of "bond length" and "bond angle", and their 
values measured using various techniques, compatible with the quantum 
mechanical description of vibrating molecules. In the quantum mechanical model 
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the wave packet representation of nuclei and the probabilistic interpretation of 
bond length and bond angle are very different from the analogous concepts 
based on the essentially classical, geometrical model. Most figures depicting the 
results of X-ray diffraction studies of molecular structures show ellipsoids (open 
sets!) rather than precise nuclear positions. A topological interpretation of such 
experimental results is certainly more appropriate than a geometrical one. 
Topology gives clear-cut quantum mechanical definitions for molecular structure 
and reaction mechanism, [4, 6] which are the two most fundamental concepts 
of chemistry. 

The predictive power of the topological model stems from its exceptional poten- 
tial to simplify complicated mathematical structures. The vast complexity of 
various features of potential energy hypersurfaces of higher dimensions renders 
both their direct calculation and their subsequent analysis by conventional 
geometrical methods extremely time consuming and cumbersome. The topologi- 
cal model, however, has several advantages. Whereas on the one hand it offers 
only a modest simplification in the computations (instead of the energy hypersur- 
face of dimension n, only the boundaries of open sets need to be calculated, 
which have dimensions at most n - 1), on the other hand, the subsequent analysis 
of the chemically important global features becomes quite simple. The results 
of the global analysis are expected to find important applications in experimental 
chemistry and chemical industry. The global topological description of potential 
e, nergy hypersuffaces of higher dimensions is the natural basis for the determina- 
tion and analysis of reaction networks [5], important in computer aided synthesis 
design, whenever simple inspection fails due to our inability to visualize highly 
interwoven multidimensional networks several theorems have been proven on 
topological reaction networks and on properties of "shortest" reaction mechan- 
isms [5]. These theorems lead to easily programmable algorithms for the determi- 
nation of feasible synthetic routes [5]. 

Topology ("rubber geometry") also appears to be an ideal mathematical tool to 
describe the most essential features of non-rigid systems in semi-classical theory. 
It has been shown [4-8] that a topological model arising naturally in abstract 
configuration spaces of rigorous quantum mechanics can be implemented at the 
approximate level of the Born-Oppenheimer model [3]. In the proposed model 
the concepts of molecular structure and reaction mechanism correspond to open 
sets of a topological space (~R, Tc), defined over a Riemannian nuclear con- 
figuration space nR [4, 6]. Properties of differentiable manifolds [6] have been 
exploited to derive upper and lower bounds for the numbers of all possible 
molecular structures and reaction mechanisms on energy hypersurfaces [7]. 

In the present study we shall analyze the topological properties of an Euclidean 
nuclear configuration space. In the earlier manifold theoretical model of energy 
hypersurfaces [6] homeomorphisms were defined which linked the Riemannian 
representation of the nuclear configuration space ~R to local Euclidean rep- 
resentations by defining suitable differentiable manifolds and their submanifolds. 
In the present work a more direct approach will be used: direct topologization 
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of a 3NE Euclidean nuclear configuration space. This model has a more direct 
physical interpretation than the Riemannian space referred to above E41, and it 
has some further advantages. In contrast to the Riemannian representation, 
analogies with the familiar 3-dimensional real space are readily exploited. In 
the Euclidean configuration space model the topological concepts of molecular 
structure and reaction mechanism are easier to develop and much simpler to 
visualize. Furthermore, in the Euclidean representation a conceptually simple 
algorithm can be given for the actual construction of a unique Reaction Topology. 

In particular, in this study we shall investigate the following problems: 

(1) equivalence classes of critical points of energy hypersurfaces defined over a 
3N dimensional Euclidean nuclear configuration space 3NE, where N is the 
number of nuclei, 

(2) conditions for the determination of subsets of 3NE which correspond to the 
above equivalence classes, 

(3) homotopy classes in the set of all possible reaction paths over the energy 
hypersurface E 

(4) the existence of a unique Reaction Topology (3NE, Tc) o n  3NE for each 
specified electronic state 

(5) conditions for the topological equivalence of Reaction Topology (3NE, Tc) 
in 3NE and the catchment region topology [8] (nR, Tc) in Riemannian space ~R. 

(6) topological definitions of reaction mechanisms and quantum mechanical 
reaction networks in Euclidean space 3NE and the utilization of the topological 
equivalence noted in (5) for the analysis of the set of all possible reactions on 
the energy hypersurface. 

Most of the elementary topological and manifold-theoretical definitions and 
concepts used in this study are given in Refs. [4-8]; for a more thorough 
exposition of the relevant mathematics the reader should consult Refs. [1, 2]. 
Some of the present (and earlier) results are built upon the differential- 
geometrical studies of Fukui [9, 10] and Tachibana and Fukui [11, 12], as well 
as on some general results of differential geometry [13]. Intersection properties 
of energy hypersurfaces, important in earlier [4-8] and in the present topo- 
logizations, are discussed in references [14-16]. 

2. Equivalence Classes of Critical Points in Euclidean Space 3NE 

Following the familiar definition of coordinate systems used in molecular 
dynamics studies [17, 18], we assume that the 3N dimensional Euclidean nuclear 
configuration space 3NE is spanned by the mass-weighted Cartesian coordinates 
{e/} of the N nuclei. The (unweighted) Cartesian coordinates of the individual 
nuclei refer to a fixed laboratory frame. The component x i of point x ~ 3NE along 
coordinate ei is given by 

x i : x/-~ A~y, (1) 
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i=3(a -1 )+/ ,  f = 1 , 2 , 3 .  

Here  the laboratdry-frame Cartesian coordinates of nucleus a are 

A~I =X,~ 

A.z=Y= 

A~3 =Z~, 

(2) 

(3) 

(4) 

(5) 

for each a = 1 , . . .  N, and me is the mass of nucleus a. 

The usual Euclidean metric defines the metric topology [1, 2] T on 3NE, and 
distance, angles, orthogonality, and open sets will refer to this metric unless 
stated otherwise. 

The Born-Oppenhe imer  energy functional E(x) for a given electronic state of 
the molecule of N nuclei is assumed to be defined above 3~E. We shall also 
assume that E(x) is twice continuously differentiable at all points of 3NE\Dexcl 
where subset Dexcl ~ 3NE, is defined by 

Dexd = U G(x~,, p). (6) 

Here  x~ is either a point corresponding to identical three-space (laboratory 
frame) positions for two or more nuclei, or a point where E(x) is not twice 
continuously differentiable (e.g. x~ is a point where a conical intersection of two 
potential hypersurfaces [12-14] occurs). The p radius of open balls G(x~,, p) is 
a small positive value. (The analogous definition for Dexc~ in Riemannian space 
~R has been given elsewhere [4], where openness has been defined in terms of 
Riemannian metric go, rather than in terms of an Euclidean metric.) 

At every point x ~ 3NE\DexcI the gradient 

g(x) =VE(x) (7) 

is well defined. Due to the choice of the mass weighted coordinates, -g(x) 
represents the direction of steepest descent on the energy hypersurface, i.e. the 
" force"  acting upon a hypothetical "particle" at point x, moving infinitely slowly. 
The components of this 3N dimensional " force"  vector correspond to the 
components  of all the laboratory-frame forces of relaxation acting upon the 
nuclei in the 3-space conformation specified by point x c 3NE. 

Points c ~ 3NE, where 

g(c) = o (8)  

are the critical points of E(x). The critical points are of particular importance, 
since the corresponding three-space nuclear configurations represent stationary 
conformations (energy minima, various saddle points, e.g. transition structures, or 
maxima) of the molecule. 
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All critical points c can be characterized by the Hessian matrix H(c) of the 
second derivatives of E(x) at x = c, 

H i i ( c )  - 32E(X)0xi0x i Ix=c" (9) 

If the rank of H(e) is 3 N - k  (k >0)  then c is a k-fold degenerate critical point. 
Index h of c is the number of negative eigenvalues of H(e). Index values 
,~ = 0, 1, 2 . . . . .  3N for a general function E(x) defined over a 3N-dimensional 
space correspond to minimum, saddle point of transition structure ("transition 
state"), saddle point of index 2 . . . . .  maximum, respectively. However, as it is 
easily shown, for a general polyatomic molecule in the Euclidean representation, 
no non-degenerate maximum of energy E(x) (as defined by h = 3N) can exist, 
in fact h -< 3N - 6 for every A. 

In the limit of infinitely slow nuclear motion no isolated critical point e ~ 3NE 
can exist. If e is a critical point of index h then e must belong to an at least 6 
dimensional connected subset Kc c 3ME, every element of which is also a critical 
point of the same index h : 

g(x) = 0, h(x) = h(e) ifx~Kc. (10) 

(Throughout the paper number 6 appearing in various expressions should be 
replaced by 5 if diatomics are considered). The existence of such subset K,  
follows immediately from the observation, that the three translational and three 
rotational degrees of freedom of the molecule as a whole do not affect the 
Born-Oppenheimer energy. Consequently, each critical point c ~ 3NE must be 
at least 6-fold degenerate. If this degeneracy is only 6-fold, then K~ is a 
6-dimensional connected subset in 3ME which can be generated from any critical 
point c e Kc by the following procedure: 

(1) A 3-dimensional hyperplane L~ containing c is defined by 

3 
L~={x:x=c+ ~ /3iyi}. (11) i=1 

Here parameters fli can take any real values, 

-oo-</31.-<oo, ] = 1 , 2 , 3  (12) 

and vectors yl,  y2 and Y3 correspond to unit vectors of translation in the laboratory 
frame, along X, Y and Z, respectively, as applied simultaneously to all nuclei. 
Vectors {yj} are given by 

y~ = (v/-~m ~, 0, 0, ~/m-~2, 0, 0 . . . . .  4raN, 0, 0) (13) 

y ;  = (0, ~/m-~, 0, 0, 4~2,  0 . . . . .  0, 4m-~N, 0) (14) 

and 

y; = (o, o, 4~-;, o, o, 4~-~ . . . . .  o, o, 4 ~ )  (15) 
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where ' means transpose. Alternatively, in tensorial notation the formal contra- 
variant components  of vectors y~- = y~j~ (j = 1, 2, 3) can be written as 

i 4~-~6jk (16) Y (i) = 

where 

oe = [(i - 1)/33 + 1, (17) 

k = i - 3 ( a  - 1), (18) 

and [x ] is the largest integer not exceeding x (entier function). Clearly, vectors 
yl, y2 and Y3 are pairwise orthogonal in 3NE, hence are linearly independent.  
Consequently, Lc is indeed a 3-dimensional hyperplane in 3NE. 

Hyperplanes Lc are used in the construction of sets Kc : 

(2) Kc is given as the subset of points in 3NE obtained by all possible rotations 
(within the laboratory frame) of the 3-space nuclear arrangements corresponding 
to all points x e Lc. The overall effect of an arbitrary translation and rotation 
about an arbitrary axis by any angle in the laboratory frame can always be 
reproduced by a translation in the same frame and three subsequent rotations 
about the three cartesian axes of the laboratory frame. 

It is convenient to replace the 3-space rotations along the 3 coordinate axes of 
the laboratory frame by 3 transformations, denoted by T~.(0j),/" = 1, 2, 3, acting 
directly on the 3N dimensional vectors x e L. The corresponding Ti(0j) matrices 
are block-diagonal with 3 x 3 blocks representing 3-dimensional rotations by 
angle 01- along laboratory frame axes X, Y, Z for j = 1, 2, 3, respectively: 

(Tj(O~))~ = &p(cos Oj + ( i - c o s  O~-)&q) + sin Oi(&j(&.+16o q -&+ip6o~) 

+ ($2i (($rp +2($0q --  r~r+2pr$0s ) + 33i (($rp+lr$2q - -  6 r + l p 3 2 s ) )  (19) 
where 

k = j  rood 3 (20) 

q = r mod 3 (21) 

s = p  mod 3. (22) 

With the above notations, Kc is obtained as 

gc  = {X: X = TI(Ol)T2(O2)T3(O3)XL, XL C Lc, 0 --< 01, 02, 03 < 2~'}. (23) 

In each K,  set we may choose one critical point c <'~ and we may regard the 
corresponding K,  (r) set a pointed set with distinguished element c ~'~, 

c ('~ ~ K~ (r). (24) 

Since each critical point of E ( x )  belongs to one and to only one of the Kc(r)  
sets, the set C of all critical points can be partit ioned into equivalence classes by 

C = ~_J K~ (r) (25) 
T 

where r c t for an index set t. 
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Set Dexcl (Eq (6)) is not necessarily a connected subset of 3NE, and in general it 
may be partitioned into its maximum connected components: 

--I  ID(K) D~xc l -  w ~x~l. (26) 
K 

One may choose one point d (~) in each D (~) e x c l ,  

d(~) rn (~)  (27) ~ exc l  

r~(K) and regard maximum connected components ~exd as pointed sets with distin- 
guished elements d (~). 

The following topological treatment is the simplest if we assume that for finite 
molecular systems indices ~- and K form countable sets. This assumption is valid 
if the maximum connected components of set C are the sets Kc(r) of the union 
in Eq. (25). This condition is realized e.g. if the maximum degeneracy for critical 
points of E(x) is 6-fold, since then necessarily 

/(c (r) O / ( ,  (~") = O (28) 

for every ~-, ~", ~- r r'. On the other hand, if Eq. (28) is not satisfied for certain 
K~(r) sets of highly degenerate critical points then partitioning (25) may be 
re-defined in terms of maximum connected components K'c(r) of set C as 

C = ~ K' ( r ' ) .  (29) 

Here each K',(r ') can be represented as a union of some of the original K~(z) sets: 

K',(.r') = U Kr (30) 
T c t '  

where t' is a subset of index set t. By choosing one of the critical points of set 
{c(~)},~, as distinguished element c ~'~, K'~(r') is a pointed set. For such highly 
degenerate cases we shall assume countability for sets in union (29) rather than 
for those of union (25). 

Eq. (25), or for highly degenerate cases Eq. (29) 2, corresponds to a countable 
equivalence class partitioning of the set C of all critical points of E(x), defined 
over 3NE. These equivalence classes, together with maximum connected com- 
ponents D (~) ~d of D~x~, will serve as the starting point for the introduction of a 
unique Reaction Topology (3NE, Tc) into the Euclidean nuclear configuration 
space 3NE. 

3. Molecular Structures as Equivalence Classes in Euclidean Space aNE 

The gradient g(x) of energy hypersurface E(x) is well defined and non-zero at 
every point x in the complement of C wDexcl, 

X C 3NE\(C ~ D e x c l )  (31) 

2 In the following discussion no direct reference will be made  to union (29) with the unders tanding 
that sets in union (29) are to replace sets in union (25) in all highly degenerate  cases. 
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furthermore,  to every such point x a unique steepest descent path P~ can be 
assigned. Since E(x) is bounded from below, each path P~ must have its extremity 
e (P~) in set C ~ D~x~1, 

e(Px) ~ C u D~xcl. (32) 

Due to partitionings (25) and (26) for any given Px either 

e (P~) s K~ (r) (33) 

o r  
_ r~(,~) e (Px) �9 ~excl (34) 

for one and only one index ~- or K, respectively. 

The set P of all steepest descent paths 

P = {ex: x ~ 3NE\(C u De~cl)} (35) 

can be parti t ioned into equivalence classes according to the equivalence classes 
(K) 

Kc (r) of critical points and maximum connected components Oexcl o f  Oexcl. The 
set of all steepest descent paths with extremities in a given Kc(z) or D (K) excl forms 
the equivalence class P(c (~) or, P(d(K~), respectively: 

P(c (~) ={Px: e(Px)cK,(z)} (36) 

P(d (~) = {P~: e (P~) c ~x~l~. (37) 

Paths from a given equivalence class P(c (~) are physically equivalent in the sense 
that they all lead to the same set K(c (~) of critical points, which points are 
physically equivalent if one disregards translation and rotation of the molecule 
as a whole in the laboratory frame. An analogous interpretation is valid for 
paths from any equivalence class of the P(d (~)) type. 

The above equivalence classes of set P induce an equivalence class partitioning 
of the entire Euclidean nuclear configuration space 3NE. These equivalence 
classes are defined as 

C (c ('~) ={x: Px c P(c ('~)} U K,(z ) (38) 

and 

C(d(~)={x: (~ (~ P~cP(d )} U D~xcl (39) 

for the two types of sets of extremities, respectively. 

From any point x within C(c ~) either there is a unique steepest descent path 
P~ which leads into set K,(z)  or point x itself is an element of set K~(~-). 
Consequently, equivalence class C (c (~) can be regarded as the catchment region 
for set Kc(z) in the Euclidean space 3NE. Similarly, equivalence class C(d ~)  is 

r~(~) The catchment region terminology follows the catchment region for set . . . .  1. 
from a direct analogy with geographical catchment regions and watersheds. 

The above definitions of catchment regions in the 3NE Euclidean nuclear con- 
figuration space model, Eqs. (38), (39), reflect the principal differences between 



18 P.G. Mezey 

the present and the earlier Riemannian space models [4]. Whereas catchment 
regions in Riemannian space "R are basins associated with point attractors [4], 
in the present model the formal point attractors are replaced by entire sets of 
equivalent critical points. More importantly, in the 3NE Euclidean space model 
there is a direct correspondence and a simple and unique transformation between 
the actual physical paths of the nuclei in the laboratory frame and paths Px c 3NE. 

Transformations within equivalence classes Kc (r) . --~K and L~exd can be given explicitly 
be defining translation operators Yi(3i), i = 1, 2, 3 and Y(13) as 

Yi (3~)x = x + 3,Yl, i = 1, 2, 3 (40) 

and 

Y([~)x = Y1([31) Y2(32) Y3([33)x. (41) 

Here vectors y~, i = 1, 2, 3, are those given in Eqs. (13), (41), (15), respectively, 
and vector 13 is given as 

1~r (~1, ~2, ~3). (42) 

By analogy with Eq. (41) a general rotation T(0) is given by 

T(O)x = Tl(O1)T2(O2)T3(03)x (43) 

where the Tj(0i) transformations are those defined in Eq. (19), and vector 0 is 
given by 

O'= (01, 02, 03). (44) 

A general point transformation within any equivalence class Kc (r) has the form 

x (2~ = T(O) Y([$)x m. (45) 

Evidently, for any point 

x ~1) c K~ (r), (46) 

and parameters 

-oo </3j < oo, / ' = 1 , 2 , 3  (47) 

0 <- Oi < 27r, i = 1, 2, 3 (48) 

the resulting point x ~2~ is also an element of the same class, 

x ~2) c Kc(r) (49) 

by virtue of definitions (11) and (23). In fact, definition (23) can be given in an 
equivalent form as 

K~(r )={x:x=T(O)Y([~)c  (~), -oo<[3 i<~ ,0<-0 i<21r , / '=1 ,2 ,3} .  (50) 

In chemical practice structural information of molecules is usually interpreted 
in terms of geometrical models, corresponding to conformations of minimum 
energy, or saddle points, i.e. in terms of points of the nuclear configuration 
space which are critical points of the energy hypersurface. This interpretation, 
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however, is valid only in the classical model of molecules and is incompatible 
with the Heisenberg uncertainty principle. In the quantum mechanical model 
no molecule can exist with a fixed nuclear configuration x ~ 3NE and it is more 
appropriate to define molecular structure in terms of an open set of nuclear 
configurations, rather than in terms of rigid nuclear geometries. From any point 
x in a given catchment region C(c (~) a spontaneous relaxation of the nuclear 
configuration along a classical steepest descent path necessarily leads to a point 
c in set Kc(z). Since this is a universal property of all points in the catchment 
region, any distortion of the nuclear configuration within C(c ~) retains a direct 
physical relation to the set Kc(z) of equivalent critical points. It is natural then 
to choose the C(c (~) and C(d ~K)) catchment regions for a structural classification. 
Such a structural classification retains the reference to critical points, i.e. it may 
be regarded as a generalization of the classical structural model and at the same 
time it circumvents the incompatibility of the geometrical point models with the 
uncertainty principle. 

In the 3NE Euclidean nuclear configuration space model a unique definition can 
be given for molecular structure : 

Each distinct molecular structure is a catchment region C (p (~), (p (~ = c ~) or d (~) 
of the nuclear configuration space 3NE. Each molecular structure corresponds to 
a subset of nuclear geometries in the space 3NE, and not to distinct points of 
individual nuclear geometries. Note that, 

(1) the above structure definition refers to a specified energy hypersurface E(x) 
over 3NE, that is, to a given electronic state. Different energy hypersurfaces of 
different electronic states imply different catchment regions i.e. different chemical 
structures over the same nuclear configuration space 3NE. 

(2) The definition of sets K~(z) " " ( ~  anti Uexcl and that of catchment regions C(p ('~) 
imply that the catchment regions of 3NE are disjoint: 

C(p(~'~)NC(p (~'~) :J3 ifo- So-'. (51) 

(3) The boundedness of energy hypersurface E(x) and the definition of catch- 
ment regions imply that the latter form a cover of the entire space 3NE: 

U C(P (~ = 3NE (52) 
o -  

(4) Since the catchment regions are disjoint, Eq. (51), property (3) also implies 
that the union in Eq. (52) represents a unique partitioning of space 3nE. 

One may restate the above observations in chemical terms: chemical structure 
is well defined in terms of a set of nuclear geometries, and the nuclear con- 
figuration space is nothing else than a collection of chemical structures of a 
specified electronic state. 

The above properties lead to a well defined topological description of the nuclear 
configuration space 3NE. 
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4. Homotopy Classes of set P of All Steepest Descent Paths 

Transformations of the form T(0) Y(13) are not limited to critical points. These 
are transformations of the most general form which interrelate those position 
vectors in the Euclidean space aNE which correspond to equivalent nuclear 
arrangements in the 3-dimensional physical space of the laboratory frame. This 
property implies the following important relations: 

(1) if x ~o) ~ C (p ~)), p ~) = c ~) or d ~K) then 

T(O) Y(13)x ~~ = x ~1) ~ C ( p  ~ )  (53) 

(2) if Px(0) c P ( p ~ ) ,  p ~  =c (~) or d ~) then 

T(0) Y(13)Px (0) = e~ (1) ~ e ( p  ~)) (54) 

where in Eq. (54) the transformations of paths are taken in the pointwise sense. 

Transformation (54) defines homotopies between paths Px(0) and P~(1) of 
equivalence class P ( p ~ ) .  The simplest such homotopy is given in terms of a 
continuous parameter w, 0 --- w -< 1, as 

h(O, 13, w) = T(wO) Y(w13) (55) 

for which 

h (0, 13, 0)Px (0) = P~ (0) (56) 

and 

h(0, I~, 1)P~(0) = P~(1). (57) 

A more general homotopy h (0, 13, t, b, w) is given in terms of two continuous 
vector functions t (w) and b (w), 

t : [0, 1] ~ 3E (58) 

b : [0, 1] ~ 3E, (59) 

for which the only restrictions besides continuity are 

t(0) = b (0) = 0 (60) 

and 

t(1) = b(1) = 1. (61) 

This homotopy is defined by 

h (O, 13, t, b, w) = T ( h ( w  )01, t2(w )02, t3(w )O3) g (bl(w )[~l, b2(w)~2, b3(w)~3). 
(62) 

Clearly, 

h(0, 13, t, b, 0)Px(0) = P~(0) (63) 

and 

h(0, 13, t, b, 1)P~(0) = P~(1). (64) 
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In the special case of 

t'(w) = b'(w) = (w, w, w) (65) 

homotopy h(0, 13, t, b, w) becomes h(0, 13, w) of Eq. (55). 

Homotopies given by Eq. (62) represent continuous deformations of steepest 
descent paths in equivalence class P(p<~)), the two extreme cases being Px(0) 
and Px(1) as w varies 0~1 .  Paths Px(w) generated by a given hom0topy 
h(O, [3, t,b, w) belong to the same homotopy class and are homotopically 
equivalent. Any combinations of simultaneous rotation and translation in the 
laboratory frame which leave the path of actual nuclear rearrangement physically 
invariant, relative to the molecule, correspond to a homotopy class of paths within 
equivalence class P(p(~ )c  3NE. That is, homotopy classes of paths induced by 
homotopies h (0, 13, t, b, w) generate a "fine" classification of paths within the 
"large" equivalence class P(p(~)), which finer classification refers to specific 
displacements of a distorted geometry of the molecule as a whole, together with 
its relaxation path in the laboratory frame. In particular, homotopies 
h (0, 13, t, b, w) and h (0, 0, t, b, w) correspond to homotopy classes of paths which 
are related to each other within a class by pure translation and pure rotation, 
respectively, in the laboratory frame. 

Note, that the above homotopy classes are more numerous than the possible 
Eckart frames of the molecular system [19, 20]. In order to obtain a homotopy 
compatible with any given Eckart frame, it is necessary for both Px(O) and Px(1) 
to be paths compatible with the same Eckart frame, which is not in general valid 
for arbitrary paths Px(O) and P~(1) of equivalence class P(p(~)). Consequently, 
the characterization of molecular deformations in terms of the above homotopies 
is finer than the one given in terms of Eckart frames. Homotopies of the above 
form will be used in the following analysis of reaction mechanisms. 

5. Reaction Topology: Topological Structure of Energy Hypersurtaces Based 
upon Catchment Regions in Euclidean Space 3NE 

The metric topology T o n  3NE is defined by the e-neighbourhoods of points 
x ~ 3NE as open sets, where the metric is the usual Euclidean metric of 3NE. 
The induced metric topological space (3NE, T) reflects the usual concept of 
openness, since the T-open sets of (3NE, T) are precisely those subsets of 3NE 
which are open in the conventional sense. 

The catchment region partitioning, Eq. (52) of 3NE, however, induces several 
different topologies, which are more closely related to the chemical concepts of 
molecular structure and reaction mechanisms. 

Family t2' of all catchment regions, 

C' = {C(p(~))} = {C(c('))} U {C(d~K))} (66) 

is a defining subbase for a unique topology Tc, on Euclidean space 3WE. That C' 
is indeed a proper subbase, it follows from the fact that elements of C' form 
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a cover for aNE, Eq. (52), and from the observation that the empty union of 
elements of C' is the empty set 0. Note, that finite intersections of elements of 
C' are also elements of C', consequently C' is also a base for the same topology 
Tc,. 

Set Tc, is the family of all sets which are unions of sets from the base. Thus Tc, 
is indeed a topology on 3~E, since 

(1) the whole space 3~rE and the empty set 0 belong to Tc, 

3NE, 0 E Tc, (67) 

(2) the union of any number of sets from Tc. also belongs to Tc, 

~.J T~ e To, if each T~ e To, (68) 

(3) the intersection of any finite class of sets in Tc, is also a set in To, 

Ti ~ To, if each Ti ~ To, and m is finite. (69) 
i=1 

Family C", defined as 

C" : {C(p(~>)} (70) 

where the closure symbol - refers to the metric topology T, is a defining subbase 
for a different topology, Tc,,. Evidently, elements of C" also form a cover for 
3NE. Note however, that finite intersections of elements of C" are not necessarily 
elements of the same family C" (see e.g. example of Fig. 2, Ref. [5]), consequently 
family C" itself is not necessarily a base for topology Tc,. 

The third, and possibly the most important topology, Tc, is defined in terms of 
defining subbase C, where 

c = c ' U c " .  (71) 

That Tc,, and Tc are proper topologies on 3NE can be shown easily by proving 
relations analogous to (67)-(69). 

By introducing topology To,, Tc,, or Tc, Euclidean space 3NE becomes a topo- 
logical space (3NE, Tc,), (3NE, Tc") or (3~rE, Tc),  respectively. 

In topological space (aNE, Tc,) the open sets are the chemical structures and 
their unions, as a consequence of the definition of catchment regions of the 
Euclidean representation of the nuclear configuration space. For the analysis of 
interrelations between various chemical structures topological space (3NE, Tc,,) 
and particularly, (3NE, Tc)  are more suitable since in these spaces various neigh- 
bour relations between chemical structures can be defined as topological relations, 
which lead to a suitable topological description of reaction mechanisms. Before 
analyzing such relations, we shall introduce a series of topologies on the energy 
hypersurface E(x) defined over Euclidean space 3~rE, which topologies are 
pairwise equivalent to Tc,, Tc,, and Tc on 3~rE. 
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We shall assume that E(x), E(x):3NE~ 1E is a continuous functional in the 
usual sense, that is, it is T, T' continuous in the metric topology T of 3NE and 
metric tolSology T' of 1E. In fact, we shall assume more: that E(x) is twice 
continuously di~terentiable in all of 3NE.3 Functional E(x) defines a mapping E 

.~ : 3NE ~ E ~ 3N+IE. (72) 

Here the energy hypersurface E is regarded a subset of an Euclidean s p a c e  3N+IE, 

3N+IE = 3NE @ 1E (73) 

which latter is a direct product of nuclear configuration space 3NE and IE, a one 
dimensional space containing the range of functional E(x). 

The properties of functional E(x) imply that the inverse of mapping E, i.e. 
projection ~ = E -1 

'It : E  ~ 3NE, E ~ 3N+IE (74) 

is also continuous in the metric topologies of the above spaces. Consequently, 
E is a homeomorphism from 3NE to E. 

Mapping E as applied to a set X ~ 3~rE generates the homeomorphic image Xz 
on hypersurface E :  

E X  = X E  ~ E c 3N+IE (75) 

~XE = X. (76) 
Consider the following families of sets 

C~ = {CE (p(~))} (77) 

C "  E = {Ce (P(~)} (78) 

and 

c =c Uc 1' E (79) 

where elements of families C'  C" e, E and CE are the homeomorphic E-images of 
elements of families C', C" and C, respectively. Since elements of either one of 
C', C", or C form a cover of 3NE, elements of either one of C '  " e, CE or CE form 
a cover of energy hypersurface E. 

Families C '  C" E, z and CE are defining subbases for three topologies, Tc'E, Tc,'E 
and TcE, respectively, on the energy hypersurface E. By the above definitions, 
mapping E, as a homeomorphism, establishes pairwise topological equivalences 
(denoted by - )  between the induced topological spaces (E, Tc,E), (E, Tc,,E), and 
(E, TcE) of the energy hypersurface E and topological spaces (3NE, Tc,), 
(3NE, Tc,,) and (3NE, Tc)  of Euclidean space 3NE, respectively: 

(E, Tc'E) - (3NE, Tc') (80) 

3 The above conditions are not necessarily fulfilled in domain Dexcb however, E(x) always can be 
extended continuously and differentiably from 3NE\Dexcl to 3NE using a method described in Ref. 
[8], part I of our study. 
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(E, TC',E) ~ (3NE, Tc,,) (81) 

and 

(E, TeE) ~ (3NE, Tc).  (82) 

The above relations (80)-(82) allow one to carry out a topological analysis in 
either one of a pair of topological spaces, since all topological properties are 
necessarily transferrable from one space to the other. In the present study we 
shall choose topologies in Euclidean space 3~rE as the primary subject of our 
investigations. 

Any Tc,- open or Tc,,- open set is also open in the Tc topology, however, Tc- open 
sets are not necessarily Tc,- open or Tc,,- open. That is, topology Tc is finer than 
either the Tc, or Tc,, topology. Topologies Tc, and Tc,  on the other hand, are 
non-comparable, that is, neither one is finer than the other. Analogous relations 
are valid for the respective TC'E, Tc,,E and Tc~ topologies on the energy hypersur- 
face E:  

(3NE, Tc,) c (3NE, To) (83) 

(3NE, Tc,,) c (3NE, Tc) (84) 

(E, TO,E) ~ (E, TcE) (85) 

(E, TC"E) c (E, TcE). (86) 

Open sets in the above topological spaces have important chemical interpreta- 
tions. 

Chemical structure is a Tc,-open set which is an element of base C'  of topological 
space (3NE, Tc,). Note that each chemical structure is also a Tc-open set. 

A stable molecule is a chemical structure C(p~)) ,  where 

p ~) = c ~ (87) 

a critical point with index 0, 

,~ (c ~ )  = o, (88) 

i.e. p (~ is a minimum. 

A transition structure ("transition state") is a chemical structure C(p ("~) where 

p ~) = c ~ ,  (89) 

a critical point with index 1, 

(c ~)  = 1, (90) 

i.e. p~) is a saddle point of index 1. 

Chemicalstructures C ( p ~)) ~) " with distinguished element p being a critical point 
c <~ of index larger than 1, 

A (c ~'~)) > 1 (91) 
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are of somewhat lesser chemical importance than the above two types, since 
such critical points do not occur along ideal minimum energy reaction paths [21]. 

The number of all possible chemical structures of various types, with reference 
to a given set of nuclei and electrons, and regarding a specified electronic state, 
can be determined by enumerating the distinguished critical points c ~). The 
enumeration problem of critical points is a central problem of topology [22-24], 
and for special cases of chemical energy hypersurfaces it has been discussed in 
references [4, 7]. 

6. Relations Between Reaction Topologies in Euclidean Space 3NE and 
Riemannian Space nR 

In the earlier Riemannian nuclear configuration space model [4-6, 8] partitioning 
of space nR and various topologies in ~R have been introduced, based upon the 
definition of the intrinsic reaction coordinate of Fukui [9, 10] and Fukui and 
Tachibana [11, 12]. This definition gives the intuitively straightforward descrip- 
tion of an ideal, vibrationless reaction path as a path in Riemannian space nR 
which is orthogonal to every equipotential surface crossed. Orthogonality can 
be defined in a coordinate-invariant way in Riemannian spaces [13] as long as 
condition (a) is met: 

(a) the Jacobian determinant of the coordinate transformation is non-zero. 
Clearly, infinitely many coordinate systems fulfill this condition. 

For a physically correct model it is also necessary to satisfy condition (b): 

(b) there is a correspondence between the vibrationless relaxation paths of 
nuclear displacements in the laboratory frame 3E and the ideal reaction paths 
in subsets of ~R. Such correspondence implies a correspondence between the 
vectors of laboratory frame forces acting upon the nuclei and the n-dimensional 
gradient vector of the potential energy hypersurface over nR [4-6, 8]. 

Note that it is sufficient if condition (b) can be satisfied in locally defined Euclidean 
spaces generated in a manifold representation of Riemannian space nR [6], as 
long as the coordinate domains G (i~ of nR contain the inverse images of catchment 
regions defined in the local Euclidean spaces. Equivalently, it is sufficient if 
diffeomorphic images H ~i~ of coordinate domains G ~i) [6] contain catchment 
regions C ~ in the local Euclidean space. 

Let  us assume that the Riemannian representation (in fact an infinite set of such 
representations) fulfills the above conditions. Consider a set of N paths represent- 
ing simultaneous nuclear relaxations in laboratory frame 3E and the correspond- 
ing ideal reaction path P in hR. This correspondence is in general not one to 
one since for n - - 3 N - 6  there are infinitely many sets of N paths in 3E with 
the common image P, as translation and rotation of the molecule as a whole, 
together with the set of N paths in 3E, do not affect P. 

In any such Riemannian representation the paths of steepest descent in nR \Dexcl 
have well defined extremities [4] which are physically equivalent in all such 
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representations. Consequently, the resulting catchment region topologies are 
also equivalent in all representations which fulfill conditions (a) and (b). 

By comparison, in the 3~E Euclidean nuclear configuration space model condi- 
tions (a) and (b) are replaced by features inherent in the model and are automati- 
cally satisfied. Consequently, the catchment region reaction topologies defined 
in Riemannian spaces ~R (subject to conditions 
topologies in 3NE are topologically equivalent: 

(3~rE, Tc,) - (nR, Tc,) 

(3NE, Tc,,) - ("R, Tc,,) 

(3NE, To) - (nR, To). 

(a) and (b)) and reaction 

(92) 

(93) 

(94) 

The above topological equivalences enable one to transfer all results obtained 
for topological space ("R, Tc) [6, 8] directly to topological space (3wE, Tc). Most 
of the results in the rest of the present study can be obtained directly by the 
above device. However, we shall follow a more consistent route to these results 
by giving the necessary definitions in 3NE and by pointing out direct relations 
between reaction path properties in 3NE and in the laboratory frame 3E. On the 
other hand, for abstract relations between quantum chemical reaction networks 
and reaction graphs, where the laboratory frame interpretation of results is no 
longer feasible, we shall adopt a formal transfer of results from (nR, To) to 
(~E, T~). 

7. The Topological Model of Reaction Mechanisms in Euclidean Space 3NE 

The classical interpretation of an elementary reaction step is a direct interconver- 
sion of "reactants" into "products" without involving any other chemical species. 
In the geometrical model this corresponds to a direct change of the nuclear 
configuration of the reactant to that of the product. In our topological model 
reactants and products are represented by open sets of a topological space, and 
a direct interconv~ersion implies that these open sets must be related in a simple 
way, they must be "neighbours" in certain sense. 

We need a topological definition for a neighbour relation of chemical structures 
in 3NE. By taking advantage of equivalences (92)-(94), one could rely on 
neighbour relations in space nR and relations induced by them in aNE. It seems 
more appropriate, however, to define neighbour relations directly in 3NE. Such 
a definition can be given most conveniently in topological space (3NE, Tc). For 
any two chemical structures C(p ~)) and C(p~')), 

C(p~)), C(p (~')) ~ Tc (95) 

a neighbour relation is defined as 

C(P(~"))=[I~0 if C(p~) )n (~ (p~ ' ) )~0  N(C(p('~)), otherwise (96) 
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where 

o- ~ o-' (97) 

and evidently, 

O(pc~)), (:,(pC~'~) s Tc  (98) 

For simplicity, in writing relation N the actual open sets will be often replaced 
by the distinguished elements, e.g. N ( p  c'*), pC,,')). 

Two further relations, the strong neighbour relation N ~ and the symmetric strong 
neighbour relation (s-neighbour relation)/V~ are defined as 

{10 ifC(P~~176 
N s (p c~), p c~')) __ otherwise (99) 

and 

{ ~ if NS (p C~ P ~ + NS (p C~ P C~ >- I 
~(p~O),pCO-')) = otherwise (100) 

respectively. 

Note that if chemical structure C (p c~)) is a strong neighbour of chemical structure 
C(p ~'') then the two structures are s-neighbours and also neighbours, since N ~ 
implies N '  and N~ implies N:  

Ns--> N ~ (101) 

/Q~ --> N (102) 

and evidently 

N ~ -->N. (103) 

However,  none of the converse statements is valid in general: 

/Qs-~ NS 

N ~ N  s 

N C, N ~. 

Note that relations N and ~ s  
symmetric: 

for all p<+~, pC+') pairs, whereas 

N ~ (p c~), p c~'~) ~ N~ (p <T,), P r 

for some pairs of structures. 

(104) 

(105) 

(106) 

are symmetric whereas N ~ is not in general 

(107) 

(108) 

(109) 
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Consider the example of two stable molecules C(c (~)) and C(c(")), 

h (c (~)) = h (c (T')) = 0 (110) 

separated by a transition structure C(c(~')), 

A(c ~'')) = 1. (111) 

Typically all these structures are pairwise neighbours, 

N(c (~), c (~')) = N ( c  (~), c (~')) =N(c (~'), c (~')) = 1 (112) 

but only the transition structure is an s-neighbour of the two molecules, 

N'(c  (~~ c (~)) = N ' ( c  (~'), c (~')) = 1 (113) 

NS(c(~), c (~')) = 0, (114) 

and only the transition structure has strong neighbours: 

N'(c  ('), c (~')) =NS(c  (''), c (~')) = 1, (115) 

NS(c (~'), c (~)) =NS(c  (~'), c (~')) =NS(c  (~), c (~')) =N~(c  (~'), c (~)) = 0. (116) 

Eqs. (115) and (116) are examples for asymmetric strong neighbour relations. 

Consider the set Q(a, b) of all paths interconnecting points a, b ~ 3NE, 

a ~ C(p (%)) (117) 

b ~ C(p(~)). (118) 

Take two paths, Oo(a, b) and Ol(a, b) 

Oo(a, b), Ol(a, b)~ Q(a, b) (119) 

of the following properties: 

(1) Both O0 and O~ pass through the same sequence of catchment regions 

C(p('~ C(p('O), C(p ('~)) . . .  C(p ('~)) (120) 

(2) There exists a homotopy 

h(a,b, w):Q(a,b)| 1]~  Q(a, b) (121) 

such, that 

h (a, b, O)Oo(a, b) = Oo(a, b) (122) 

h(a, b, 1)O0(a, b) = Oa(a, b) (123) 

and for every w c [0, 1] the path Ow(a, b), given by 

O~(a, b) = h(a, b, W)Oo(a, b), (124) 

passes through exactly the same sequence of catchment regions as given in Eq. 
(120). Note, that this homotopy is in general not unique for a given pair of a, 
bc3NE. 

P. G. Mezey 
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Property (1) implies that each catchment region in sequence (120) is an s- 
neighbour (hence a neighbour) of the two catchment regions immediately preced- 
ing and following it in the sequence. 

Evidently, all homotopically equivalent paths, thus the entire set {Ow (a, b)} of 
these paths, represent the same sequence of chemical structures. Regarding 
C (p (~o)) the reactant and C(p (~k)) the product, each element of the set {Ow (a, b)}, 

{Ow(a, b)}c Q(a, b), (125) 

is a representation of the same reaction mechanism, consisting of k elementary 
reaction steps. 

Set 

Q(C(P %~, C(P('k))) = U {O} (126) 

is the collection of all paths O satisfying condition (120) for every a, b pair 
which in turn fulfill conditions (117) and (118), respectively. Homotopies given 
by Eq. (121) are continuous mappings on subsets of Q(C(p%)), C(p(~))) 

Q(a, b) c Q(C(p  %)), C(p('~))). (127) 

The entire Q(C(p%)), C(p('~))) set can be generated as the union 

Q(C(p('~ C(p('~))): ~_J ~_J ~_J {Ow(a,b)}. (128) 
a~C(p  (To)) Oo(a, b) h(a, b, w) 
b~C(p  (~k)) Oa(a, b) 

whereas sets {Qw(a, b)} with different a, b pairs are disjoint 

{Qw (a, b)} (-'/{Qw (a', b')} = 0, (129) 

if either 

a ~ a' (130) 

or 

b ~b ' ,  (131) 

and sets differing only in the choice of paths O0(a, b) and Ol(a, b), or in the 
actual choice of homotopies h (a, b, w), are not in general disjoint. Consequently, 
the right side of Eq. (128) is a cover but not a partitioning of set given in Eq. (126). 

Eq. (128) is a special representation of the set given in Eq. (126), in terms of 
sets of homotopically equivalent paths, all of which represent the same reaction 
mechanism. Since set of Eq. (126) contains all paths compatible with sequence 
(120), it is a general representation of the corresponding reaction mechanism. 

Homotopical equivalences in 3NE reflecting the physical equivalences of paths 
m laboratory frame 3E can be introduced for general paths in set Q(C(p('~ 
C(p('~))) in the same way as for steepest descent paths P. Homotopies 
h(0, 13, t, b, w), defined in Eq. (62) as applied to path 

O(a (~ b (~ ~ Q(C(p('~ C(p('~))) (132) 
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cause a continuous deformation of path Q (a (0), b (~ a path 

h (O, 13, t, b, w )O (a ~~ b ~~ = O (a ~), b ~)) (133) 

where 

O(a (w~, b (w)) c Q(C(p(~~ C(p%~)) (134) 

that is, to a path belonging to the same reaction mechanism. In particular, 

a(W) s C(p %~) (135) 

and 

b(W~ ~ C(p('k~) (136) 

for every w ~ [0, 1], and 

h ( O, 13, t, b, O )Q ( a ~~ b (~ = O ( a ~~ b ~~ 

h(O, 13, t, b, 1)O(a (~ b (~ = O(a (1~, b(1)). 

(137) 

(138) 

The effect of homotopy h(0, 13, t,b, w) as parameter w sweeps through the 
interval [0, 1], is to generate all paths in Q(C(p %~, C(p%~)) which correspond 
to continuous displacement of the entire deformation paths of all nuclei in 
laboratory frame 3E. In other words, this homotopy generates a particular "path 
of a path" in 3NE, specified by vector functions t(w) and b (w). Each path along 
this "path of a path" belongs to the same reaction mechanism, furthermore, 
they are all 3NE- space images of physically equivalent laboratory frame deforma- 
tions. 

Let 

Q'(C(p('O)), C(p%))) = ~_J Q, Q ~ Q(C(p('~ C(p('k))) (139) 

be defined as the point-set union of elements of set given in Eq. (126). 

It is evident from the union representation (128) of Q(C(p(~~ C(p%))) that 
this point-set union is an open set in the (3NE, Tc,) topological space, hence an 
open set in the (3NE, Tc) topological space. In particular, it can be given as the 
union 

Q'(C(p(~~ C(p%)))= ~.J C(p %~) (140i 
i=o 

as follows from condition (120). 

Comparison of Eqs. (128) and (140) implies that a general k-step reaction 
mechanism can be represented as open sets of both the (3~rE, Tc,) and (3NE, Tc) 
topological spaces, that is, reaction mechanisms and relations between them are 
topological properties in the above two spaces. 
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It is of some importance to decide which open sets correspond to topological 
reaction mechanisms. The neighbour relations, in particular the s-neighbour 
relation _~ rs in topological space (aNE, To) yields a simple definition for reaction 
mechanism. 

Reaction Mechanism: the union of a sequence of T-open sets of subbase C of 
topology Tc on 3NE (Eq. 71) is a general reaction mechanism in topological 
space (aNE, Tc) if and only if every two T-open sets adjacent in the sequence 
are s- neighbours. 

The above definition of reaction mechanisms in Euclidean space 3NE, in combina- 
tion with the s-neighbour relation in (3NE, Tc), lead to the definition of reaction 
networks on the energy hypersurface. The network of all possible chemical 
reactions on a given energy hypersurface can be defined by the intersection graph 
of sets of subbase C. Note, that the various neighbour relations themselves have 
been defined in terms of intersections, consequently, property (120) implies that 
a generalreaction mechanism in (3NE, Tc) corresponds to a walk on the intersection 
graph. 

The above observations indicate that in spite of the differences in dimension 
and in the definitions and physical concepts of catchment regions in 3NE and 
"R, conditions (a) and (b) for the topological equivalence of (3NE, Tc) and (~R, Tc) 
ensure that the chemically important fundamental features of energy hypersur- 
faces are the same o v e r  3NE and "R. In particular, if conditions (a) and (b) are 
met, all differences disappear for intersection graphs, and the induced reaction 
networks and reaction graphs are the same in 3~rE and in hR. Consequently, the 
analysis of reaction networks, given for "R in reference [5] is equally applicable 
to the (3NE, Tc) reaction topology and Theorems 1-6 [5] are equally valid for 
quantum chemical reaction networks defined on energy hypersurfaces over 
Euclidean space 3NE. 

8. Conclusions 

Topologies Tc,, Tc,, and Tc introduced into the Euclidean nuclear configuration 
space 3NE give unique definitions of the two most fundamental chemical concepts: 
molecular structure and reaction mechanism. It is shown that the above topologies 
are equivalent to topologies introduced earlier into Riemannian representations 
of the nuclear configuration space [4-8] and also to topologies defined on the 
energy hypersurface itself. In the case of the Euclidean representation, however, 
a direct relation can be established between molecular deformations in the 
laboratory frame and homotopies in the nuclear configuration space. 

Neighbour relations in topological space (3NE, Tc) lead to the definition of 
reaction networks in terms of intersection graphs of Tc- open sets. The Tc- open 
sets themselves can be determined directly by the calculation of their boundaries, 
which have dimensions always less than the dimension of the energy hypersurface. 
That is, for the actual topologization no direct calculation of the hypersurface 
itself is required, and some computational savings can be realized. 
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Topological equivalences (92)-(94) establish the general validity of theorems 
derived for quantum chemical reaction networks [5], two of which are of par- 
ticular importance in computer-aided synthesis planning: 

Theorem (Theorem 3, Ref. [5]): 
For any two chemical structures vl and vj in GSUt), the maximum number of 
step-disjoint reaction mechanisms is equal to the minimum number of elementary 
reaction steps separating them in G s (A). (Using the terminology of the Euclidean 
representation of the nuclear configuration space as given in the present work, 
G s (~) is a subgraph of reaction graph defined by the Tc-topological s-neighbour 
relation of Eq. 100). 

Theorem (Theorem 6, Ref. [5]) 
If GS(&) is a connected graph, then a shortest reaction mechanism between two 
chemical structures vi and vi consists of k elementary reaction steps, where k is 
the smallest integer such that 

A~(G'(A))  ~ 0. 

(Here A is the adjacency matrix.) 

The same topological equivalences, Eq. (92)-(94) ensure that the topological 
properties of product space nR | wZ, are equally valid in the product space 
defined a s  3NE @ wZ, where wZ is the abstract nuclear charge space [25]. Lower 
and upper energy bounds, as well as electronic energy inequality relations derived 
in nR | wz [25-29]  are equally valid in 3uE | wZ. Note that the application of 
these topological inequality relations require much less calculations than that 
needed for the boundaries of Tc-open  sets. In fact the application of most 
wZ-space results require only "back of an envelope" type calculations [25-29]. 
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